Studies on Tetrahydroisoquinolines. Part 15.1.2 Lead Tetra-acetate Oxidation of Four Hydroxytetrahydroprotoberberines, (\pm)-Govanine, (\pm)-Discretine, (\pm)-Corytencine, and (\pm)-10-Hydroxy-2,3,11-trimethoxytetrahydroprotoberberine

By Hiroshi Hara, Machiko Hosaka, Osamu Hoshino, and Bunsuke Umezawa,* Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo, 162, Japan

Lead tetra-acetate oxidation of (\pm)-2-(1) and (\pm)-10- (2) hydroxytetrahydroprotoberberines afforded the p quinol acetates (5) and (6), which on treatment with acetic anhydride-concentrated sulphuric acid gave (\pm) $-2,5 \beta-$ (35), and (\pm) $-10,13 \alpha-(40)$ and (\pm) $-10,13 \beta$ - (41) diacetoxytetrahydroprotoberberines respectively. Alkaline hydrolysis of the diacetate (35) produced the (\pm) -5α - (38) and (\pm) -5 5 - (39) methoxy-compounds, whereas similar treatment of the diacetates (40) and (41) produced the same (\pm)-13 α-methoxy-derivative (42). While oxidation of (\pm)-3-hydroxytetrahydroprotoberberine (3) gave directly the (\pm) -5α - (7) and (\pm) -5 β - (8) acetoxy-derivatives, oxidation of the (土)-11-hydroxy-congener (4) produced the unexpected rearranged product, the (\pm)-12-acetoxy9 -hydroxy-derivative (18), together with a small amount of (\pm)-13 -acetoxytetrahydroprotoberberine (17). A discussion of the stereochemistry of the reactions is presented.
quinoline (30) (85.6% yield), was determined analogously to that of (18). Namely, the pentamethyl ether (31) was unequivocally identical with authentic $(\pm)-3-$ (2-ethyl-4,5-dimethoxyphenyl)-5,7,8-trimethoxy-2-

	R^{1}	R^{2}	R^{3}	R^{4}
(1)	H	Me	Me	Me
(2)	Me	Me	H	Me
(3)	Me	H	Me	Me
(4)	Me	Me	Me	H
(29)	Me	Me	Me	$\mathrm{CH}_{2} \mathrm{Ph}$

	R^{1}	R^{2}	R^{3}	R^{4}
(17)	Me	H	OAc	H
(19)	Me	Me	OH	H
(40)	Ac	Me	H	OAc
(41)	Ac	Me	OAc	H
(42)	H	Me	H	OMe

	R^{1}	R^{2}	R^{3}	R^{4}
(7)	Me	H	H	OAC
(8)	Me	H	OAC	H
(9)	Me	AC	H	OAC
(10)	Me	AC	OAC	H
(11)	Me	Me	H	OAC
(12)	Me	Me	OAC	H
(13)	Me	H	OH	H
(14)	Me	H	H	OH
(15)	Me	Me	OH	H
(16)	Me	Me	H	OH
(35)	AC	Me	OAC	H
(36)	H	Me	OH	H
(37)	Me	Me	OAC	H
(38)	H	Me	H	OMe
(39)	H	Me	OMe	H

stereospecifically (\pm)-2,5ß-diacetoxy-3,10,11-trimethoxytetrahydroprotoberberine (35), in $\mathbf{9 0 . 9} \%$ yield, the configuration of the aliphatic acetoxy-group being assigned on the basis of the one-proton triplet ($J 2.5 \mathrm{~Hz}$) at $\delta 6.00$ in the n.m.r. spectrum. Hydrolysis of (35) gave

$\begin{array}{lcccc} & R^{1} & R^{2} & R^{3} & R^{4} \\ \text { (18) } & O H & O M e & H & O A C \\ \text { (20) } & O A C & O M e & H & O A C \\ \text { (21) } & O M e & O M e & O M e & H \\ \text { (22) } & H & O M e & O M e & O M e \\ \text { (23) } & O M e & O M e & H & O M e \\ \text { (24) } & O M e & H & O M e & O M e\end{array}$

(25)

(26)

(27)
the diol (36), and since (35) was reconverted on acetylation of (36), it was demonstrated that no configurational change had occurred during hydrolysis. Methylation of (36) with diazomethane afforded the monoac hydroxy-compound (15), which on acetylation yielded the known (土)-5 hydroprotoberberine (37). ${ }^{8}$ Hydrolysis of (35) with aqueous $\mathrm{KOH}-\mathrm{MeOH}$ furnished a mixture of $(\pm)-2-$ hydroxy-3,5 $, 10,11$-tetramethoxy- (38) and (\pm)-2-hydroxy- $3,5 \beta, 10,11$-tetramethoxy- (39) tetrahydroprotoberberines in the ratio $1: 1$.

On the other hand, similar treatment $\left(\mathrm{Ac}_{2} \mathrm{O}\right.$-concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) of p-quinol acetate (6) afforded (\pm)$10,13 \alpha$-diacetoxy- (40) and (\pm)-10,13 β-diacetoxy- (41) 2,3,11-trimethoxytetrahydroprotoberberines in the ratio $1: 3$. Hydrolysis of either (40) or (41) with aqueous $\mathrm{KOH}-\mathrm{MeOH}$ gave the same (\pm)-10-hydroxy- $2,3,11,13 \alpha-$ tetramethoxytetrahydroprotoberberine (42), with the stereochemistry being assigned on the basis of the oneproton doublet ($J=9 \mathrm{~Hz}$) at $\delta 4.64$ in the n.m.r. spectrum. Synthesis of 13 -acetoxytetrahydroprotoberberines in the manner described above may be regarded as biomimetic. ${ }^{13}$

At present the most probable mechanistic reaction pathway appears to be as follows. Stereoselective formation of (35) may be due to attack of acetic acid that is strongly hydrogen-bonded to the β-oriented electron pair of the nitrogen in the quinone methide (43) which has an adjacent secondary carbon. The quinone
methide (44), with an adjacent tertiary carbon, presents a somewhat convex α-face giving rise to less stereoselectivity and allowing the 13α-acetate (40) to be produced to the extent of one quarter of the total product.

	R^{1}	R^{2}	R^{3}
(28)	H	$O H$	H
(30)	OAc	H	$O H$
(31)	OMe	H	$O M e$

(34)

(44)

(47)

(32) α - OAC
(33) $\beta-O A C$

(43)

(45) $\alpha-O A C$
(46) $\beta-O A C$

(48) $R^{1}=\dot{H}, R^{2}=O M e$
(49) $R^{1}=O M e, R^{2}=H$

Since the hydrogen bond between methanol and the nitrogen atom is weaker than that between acetic acid and nitrogen, and since in an alkaline medium methanol must preferentially hydrogen bond to hydroxide ion rather than nitrogen, all stereochemical control is lost during the hydrolysis, resulting in the formation of equimolar quantities of the 5α - (38) and 5β - (39) methyl ethers. On the other hand, absence of hydrogen bonding to the nitrogen atom, together with the inherent stereostructure of (44), as already mentioned, must be responsible for stereoselective formation of the 13α-methyl ether (42).

As a result of these hydrogen-bonding effects in combination with a slightly convex structure for (3), the
transient p-quinol acetates (32) and (33) undergo preenolization, forming (45) and (46), with concurrent internal 1,3 -shift of the acetoxy-group, culminating in formation of the $5 \alpha-(7)$ and $5 \beta-(8)$ acetates.

The other transient p-quinol acetate (34), derived from (4), must be formed as a single stereoisomer to furnish the 13β-acetate (17). The acetate (34), however, is a vinylogous Mannich base, and retro-Mannich opening of ring c with concomitant Mannich recyclization takes place to produce (18).

Although the same vinylogous Mannich base moiety is present in both p-quinol acetates (32) and (33), similar ring opening and recyclization do not occur. The observation that acetoxy-migration to the 5 -position is preferred to retro-Mannich reaction may be explained by the fact that the carbon adjacent to the reaction centre is secondary and does not hinder migration. Since such carbon in (34) is tertiary, acetoxy-migration is heavily hindered, thereby allowing the retro-Mannich reaction to occur. In support of this proposal, it is observed that no migration product is obtained in the reaction of (47), where the reaction terminus is completely blocked by the adjacent tertiary carbon carrying a freely rotating benzene ring.

Although no direct information concerning the stereochemical formation of p-quinol acetates has been available until now, it appears that the carbon adjacent to the carbon bearing the acetoxy-group plays a dominant role. Namely, when the former carbon is secondary, the p-quinol acetate is formed as a single isomer with the acetoxy-group in a β-configuration as evidenced in (5)

(18)
and in the 13β-acetate (17), a migration product of (34). On the other hand, when it is tertiary, p-quinol acetates are formed as pairs of isomers containing an appreciable amount of the α-isomer.

Since the net change during the novel reaction mentioned above can be viewed as a rearrangement via oxidation, such reaction may be adequately described by the term ' tetrahydroisoquinoline oxidative rearrange-
ment，＇＊and may have certain implications concerning isoquinoline alkaloid biogenesis．A related precedent for the creation of a similar oxygenation pattern has been reported in the conversion of nitidine（48）sulphate to chelilutine（49）．${ }^{\mathbf{1 4}}$

EXPERIMENTAL

All melting points were measured on a Büchi melting point apparatus．N．m．r．spectra were taken with a JEOL model JNR－4H－100 spectrometer（ 100 MHz ）in CDCl_{3} solution（5－10\％）with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard，unless otherwise noted．I．r．spectra were run on a Hitachi model $215\left(\mathrm{CHCl}_{3}\right)$ ．Mass spectra were measured with a Hitachi model RMU－6E mass spectrometer．Preparative t．l．c．was performed on silica gel HF_{254}（Merck）．Microanalytical data for all new compounds are shown in Table 1．Spectral data for tetrahydroprotoberberines and 3－phenyltetrahydro－ isoquinolines are shown in Tables 2 and 3，respectively．
（1）（5．5 g， 94.6% ）as prisms，m．p． $157-158^{\circ}$（from $\left.\mathrm{Pr}^{\mathrm{i} O H}\right)$ （lit．，${ }^{5} 170-172^{\circ}$ ）．

Oxidation of (\pm)－Govanine（1），（土）－10－Hydroxy－2，3，11－ trimethoxytetrahydroprotoberberine（2），（土）－Discretine（3）and (\pm)－Corytencine（4）．－（i）The oxidation of（1）（ 400 mg ）with $\mathrm{Pb}(\mathrm{OAc})_{4}(572 \mathrm{mg})$ in $\mathrm{AcOH}(4 \mathrm{ml})$ was carried out in the manner ${ }^{15}$ described previously to give quantitatively the p－quinol acetate（5）．
（ii）Similar oxidation as noted above of（2）（ 400 mg ）and $\mathrm{Pb}(\mathrm{OAc})_{4}(624 \mathrm{mg})$ in $\mathrm{AcOH}(4 \mathrm{ml})$ gave quantitatively the p－quinol acetate（6）．
（iii）Similar oxidation as noted above of（3）（ 100 mg ）with $\mathrm{Pb}(\mathrm{OAc})_{4}(156 \mathrm{mg})$ in $\mathrm{AcOH}(1 \mathrm{ml})$ gave an oil（ 105 mg ）， which was separated by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ ， $24: 1 \mathrm{v} / \mathrm{v}$ ）into a mixture of $(\pm)-5 \alpha-(7)$ and（土）－5 3 －acetoxy－ 3－hydroxy－2，10，11－trimethoxytetrahydroprotoberberine（8） （ $35 \mathrm{mg}, 30 \%$ ）and（3）（ $25 \mathrm{mg}, 25 \%$ ）．The former（ $7+8$ ） $(300 \mathrm{mg})[\delta 1.98$ and $2.05(3 \mathrm{H}$ ，each s， $5: 1)]$ was hydrolysed with concentrated $\mathrm{HCl}(7.5 \mathrm{ml})$ at room temperature for 2 h

Table 1
Microanalytical data for new compounds

Compound	Formula（mol．wt．）	Calc．（\％）			Found（\％）		
		C	H^{\prime}	N	C	H	N
（1）	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$（341．39）	70.36	6.79	4.10	70.15	6.9	3.8
（13）	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5}$		357.1576			$357.1566^{\text {a }}$	
（14）	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5}$		357.1576			$357.1589{ }^{\text {a }}$	
（15）	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}(375.92)$	67.09	6.84	3.72	67.1	7.0	3.65
（18）	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}(399.43)$	66.15	6.31	3.51	66.2	6.3	3.5
（20）	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{7}(441.46)$	65.29	6.16	3.17	65.05	6.25	3.05
（23）	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5}(385.44)$	68.55	7.06	3.63	68.6	6.95	3.65
（25）	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \cdot \mathrm{HCl}(407.90)$	61.84	6.43	3.43	61.85	6.45	3.5
（26）	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}(399.43)$	66.15	6.31	3.51	66.1	6.35	3.55
（27）	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$（527．35）	50.10	4.97	2.66	49.85	4.9	2.4
（28）	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}(357.43)$	70.56	7.61	3.92	70.5	7.55	3.9
（30）	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{6}(415.47)$	66.49	7.04	3.37	66.45	7.15	3.35
（31）	$\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(410.50)$	67.29	7.85	3.41	67.0	7.9	3.5
（35）	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{7}(441.46)$	65.29	6.16	3.17	65.45	6.25	3.2
（38）	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5}(371.42)$	67.90	6.78	3.77	67.75	7.0	3.75
（39）	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5}(371.42)$	67.90	6.78	3.77	68.05	6.85	3.7
（40）	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{7}(441.46)$	65.29	6.16	3.17	65.4	6.25	3.25
（41）	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{7}(441.46)$	65.29	6.16	3.17	65.4	6.3	3.2
（42）	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5}(371.42)$	67.90	6.78	3.77	67.85	6.85	3.8

（土）－2－Hydroxy－3，10，11－trimethoxytetrahydroprotoberberine $[(\pm)$－Govanine $]$（1）．—A stirred solution of 3，4－dihydroiso－ quinoline hydrochloride ${ }^{5}(454 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was treated with $\mathrm{NaBH}_{4}(76 \mathrm{mg})$ at room temperature for 1 h to give（ \pm ）－7－benzyloxy－6－methoxy－1－（3，4－dimethoxybenzyl）－ 1，2，3，4－tetrahydroisoquinoline（ $383 \mathrm{mg}, 91.4 \%$ ）as prisms， m．p．105．5－107．5（acetone）（Found：C，74．1；H，6．98； $\mathrm{N}, 3.3$ ． $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires $\mathrm{C}, 74.45 ; \mathrm{H} \mathrm{6.95;} \mathrm{~N} 3.35 \%$ ）； $\delta 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$ ，and $5.03(2 \mathrm{H}$ ， $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$ ）．A mixture of the 7 －benzyloxy－compound $(419 \mathrm{mg}), 87 \%$ formic acid（ 1.5 ml ），and 37% formalin $(1.5 \mathrm{ml})$ ，was heated on a boiling water－bath for 3 h ．After basification with saturated aqueous NaHCO_{3} ，the product was taken up in CHCl_{3} ．Usual work－up gave（土）－2－ benzyloxy－3，10，11－trimethoxytetrahydroprotoberberine（427 $\mathrm{mg}, \mathbf{9 9 . 1} \%$ ）as plates，m．p． $154-155^{\circ}$（from $\mathrm{Pr}^{\mathrm{i} O H}$ ）（Found： C， $74.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.3 . \quad \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires $\mathrm{C}, 75.15$ ； $\mathrm{H}, 6.75$ ；N， $3.25 \%)$ ；$\delta 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(6 \mathrm{H}, \mathrm{s}$ ， $2 \times \mathrm{OMe}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ ，and $6.56,6.62,6.63$ ，and 6.77 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ）．Hydrogenolysis of the 2－benzyl－ oxy－compound（ 7.45 g ）with 10% palladium－charcoal gave

[^0]to give an amorphous mass（ 219 mg ），which was separated by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 15: 1 \mathrm{v} / \mathrm{v}\right)$ into（土）－ 3，5ß－dihydroxy－2，10，11－trimethoxytetrahydroprotoberberine （13）（ $129 \mathrm{mg}, 48 \%$ ）as scales，m．p． $192-193^{\circ}$（transition at $109-111^{\circ}$ ）（from MeOH ），and the（土）－3，5 α－isomer（14） （ $54 \mathrm{mg}, 20 \%$ ）as scales，m．p． $135-138^{\circ}$（transition at $120-$ 122° ）（from MeOH ）．Methylation of（13）（ 58 mg ）with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ gave（土）－5 β－hydroxy－2，3，10，11－tetramethoxytetra－ hydroprotoberberine（ 15 ）（ $60 \mathrm{mg}, 100 \%$ ）as prisms，m．p． $182-185^{\circ}$（from EtOH）（lit．，${ }^{8} 194-195^{\circ}$ ），whose n．m．r．and i．r．spectral data were well consistent with those of an authentic sample derived from（35）．Similar methylation of（14）（ 17 mg ）afforded（土）－5 α－hydroxy－2，3，10，11－tetra－ methoxytetrahydroprotoberberine（ 16 ）（ $16 \mathrm{mg}, 90.4 \%$ ）as prisms，m．p． $177-182^{\circ}$（from MeOH）（lit．，${ }^{8}$ m．p． $175-177^{\circ}$ ）．
（iv）Similar oxidation as noted above of（4）${ }^{9}(300 \mathrm{mg})$ with $\mathrm{Pb}(\mathrm{OAc})_{4}(468 \mathrm{mg})$ in $\mathrm{AcOH}(3 \mathrm{ml})$ gave an oil $(412 \mathrm{mg})$ ， which was separated by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ ， $20: 1 \mathrm{v} / \mathrm{v}$ ）into（土）－13－acetoxy－11－hydroxy－（17）（ 50 mg ， 12.5% ），m．p． $104-114^{\circ}$ ，and（土）－12－acetoxy－9－hydroxy－ 2，3，10－trimethoxytetrahydroprotoberberine（18）（207 mg， 51.9% ）as prisms，m．p． $172-179^{\circ}$（from MeOH）．Hydroly－ sis of（17）$(20 \mathrm{mg})$ with concentrated $\mathrm{HCl}(0.2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$

Table 2
Spectral data for tetrahydroprotoberberines

Compound	$\nu_{\text {max．}} / \mathrm{cm}^{-1}$	δ			OMe	Others	$\underbrace{m / e}$					
		ArH	5－H	13－H			M^{+}	Base peak				
（a）5－Oxygenated tetrahydroprotoberberines												
（13）	3530 （OH）	6．58，6．67，	4.48 （br s，		3.87 （6 H），			357	164			
（14）	3540 （OH）	$6.52,7.04$	$4.80 \text { (dd, } J 4$		3.83 （ 9 H ）		357	164				
（15）		6．55，6．62，	4.49 （m）		3．84，3．89，							
		6．71， 6.81			3.86 （6 H）							
（16）		6．58，6．62，	4.85 （dd，$J 4$ and		3.86 （ 9 H ），							
		6．70， 7.10	8 Hz ）		3.90							
（35）	1760， 1725	6．62，6．70，	6.00 （t，$J 2.5 \mathrm{~Hz}$ ）		3.87 （9 H）	2.12 （53－OAc）						
	（OAc）	7．06， 7.08				2.33 （2－OAc）						
（36）${ }^{\text {a }}$	$3540,(\mathrm{OH})$	6.68 （2 H），	$4.84(\mathrm{t}, J 2.5 \mathrm{~Hz})$		3．72，							
		7.18 （2 H）			3.78 （ 6 H ）							
（37）	1715 （OAc）	$6.64,6.75 \text {, }$	5.97 （t，J 3 Hz ）		$3.88,3.89 \text {, }$	2.12 （53－OAc）						
（38）	3540 （OH）	6．61，6．57，	4.58 （dd，$J 5$ and		3.79 （ 6 H ），	3.51 （5 $\alpha_{\text {－OMe }}$ ）	371	164				
		6．74， 6.96	$10 \mathrm{~Hz})$		3.83							
（39）	3540 （OH）	6．49，6．57，	4.20 （t，J 2.5 Hz ）		3.78 （ 6 H ），	3.43 （ $5 \beta-\mathrm{OMe}$ ）	371	164				
		6．75， 6.83										
（b）13－Oxygenated tetrahydroprotoberberines												
（17）	$\begin{aligned} & 3530(\mathrm{OH}) \\ & 1720(\mathrm{OAc}) \end{aligned}$	$\begin{aligned} & 6.57,6.59 \\ & 6.72,7.00 \end{aligned}$		6.53 （d，J 2.5 Hz ）	3.85 （9 H）	1.71 （13 $\beta-\mathrm{OAc}$ ）						
（19）		$\text { 6.57, } 6.61 \text {, }$		$4.80 \text { (br s, }$	$3.85(6 \mathrm{H}) \text {, }$							
（40）	1760， 1730	6．61， 6.76 ，		6.14 （d，$J 8 \mathrm{~Hz}$ ）	3．76，3．83，	2.24 （13 α－OAc）						
	（OAc）	$6.78,6.83$			${ }_{3.85}{ }^{\text {a }}$	2.31 （10－OAc）						
（41）	1765,1730	6．58， 6.70 ，		6.54 （d，$J 2.5 \mathrm{~Hz})$	3．76，	1.72 （13 $3-\mathrm{OAc}$ ）						
	（OAc）	$6.80,7.03$			3.83 （ 6 H ）	2.27 （10－OAc）						
（42）	$3530(\mathrm{OH})$	$6.59(2 \mathrm{H}) \text {, }$		$4.64(\mathrm{~d}, ~ J 9 \mathrm{~Hz})$	$3.81,3.83$ ，	3.32 （ 13α－OMe）	371	180				
（c）Other tetrahydroprotoberberines												
（1）	3540 （OH）	6.52 （2 H），			3．74，							
		$6.59,6.74$			3.78 （6 H）							
（18）	3530 （OH）	$6.50,6.60$ ，			3．78，	2.27 （12－OAc）						
	1760 （OAc）	6.70			3.85 （ 6 H ）	3.03 （d， $8 \alpha-\mathrm{H})^{\text {b }}$						
						4.20 （d， $8 \beta-\mathrm{H})^{\text {b }}$						
（20）	1760 （OAc）	6.61 （2 H），			3．76，	$\begin{aligned} & 2.27,2.30(9- \\ & \text { and } 12-\mathrm{OAc}) \end{aligned}$						
		6.67			3.85 （ 6 H ）	3.46 （d， $8 \alpha-\mathrm{H})^{\text {b }}$						
						3.99 （d， $8 \beta-\mathrm{H})^{\text {b }}$						
（23）		6．38，6．59，			3．78，3．79，	3.33 （d， $8 \alpha-\mathrm{H})^{\text {b }}$	385	194				
		6.78			3.85 （ 6 H ），	$4.21(\mathrm{~d}, 8 \beta-\mathrm{H})^{\text {b }}$						
					3.88							
${ }^{\text {a }}$ N．m．r．spectrum run in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine solution．${ }^{\text {b }}{ }^{\text {b }} \mathrm{J} 16 \mathrm{~Hz}$ ．												

Table 3
Spectral data for 3－phenyltetrahydroisoquinolines

Compound （28）	$\nu_{\text {max．}} / \mathrm{cm}^{-1}$	δ				m／e	
		ArH	OMe	NMe	Others	M^{+}	Base peak
	$3540(\mathrm{OH})$	6．55，6．57，	3．81，3．83，	2.16	1.19 （3 H，t）${ }^{\text {a }}$		
		6．68， 7.04	3.87		2.67 （ $2 \mathrm{H}, \mathrm{q}$ ）${ }^{\text {a }}$		
（30）	$3530(\mathrm{OH})$	6．50，6．68，	3．82，3．85，	2.19	$1.19(3 \mathrm{H}, \mathrm{t}){ }^{\text {a }}$	415	208
	1755 （OAc）	7.05	3.87		2.19 （5－OAc）		
					2.67 （ $2 \mathrm{H}, \mathrm{q}$ ）${ }^{\text {a }}$		
					3.36 （d， $1 \alpha-\mathrm{H})^{\text {b }}$		
					$4.31(\mathrm{~d}, \mathrm{l} \beta-\mathrm{H})^{\text {b }}$		
（31）		$\begin{aligned} & 6.21,6.48, \\ & 6.78 \end{aligned}$	3．59，3．64，	2.08	$4.25(\mathrm{~d}, \mathrm{l} \beta-\mathrm{H})^{\text {b }}$		
			3.71 （9 H）				
			J．5 Hz．	16 Hz ．			

$(0.1 \mathrm{ml})$ at room temperature for 1 h furnished（土）－10，13 $\beta-$ dihydroxy－2，3，11－trimethoxytetrahydroprotoberberine（17 $\mathrm{mg}, 95 \%$ ）as an oil，which was methylated with $\mathrm{CH}_{2} \mathrm{~N}_{2}-$ MeOH to yield an oil（quantitative），purification of which on preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 24: 1 \mathrm{v} / \mathrm{v}\right)$ afforded（土）－ 13β－hydroxy－2，3，10，11－tetramethoxytetrahydroprotober－ berine（19）［7 mg， 37.6% from（17）］as prisms，m．p． $200-$ 203°（from MeOH－ether）（lit．，${ }^{10} 198-200^{\circ}$ ）．

Acetylation of（18）（ 200 mg ）with $\mathrm{Ac}_{2} \mathrm{O}$－pyridine gave an oil（ 290 mg ），which was purified on preparative t．l．c． $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 32: 1 \mathrm{v} / \mathrm{v}\right)$ to yield（土）－9，12－diacetoxy－2，3，10－ trimethoxytetrahydroprotoberberine（20）（ $188 \mathrm{mg}, 85.1 \%$ ）as prisms，m．p．164－169（from benzene）．Methylation of （18）（ 50 mg ）with $\mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{MeOH}$ gave（土）－2，3，9，10，12－ pentamethoxytetrahydroprotoberberine（23）（quantitative）as prisms，m．p． $187-189^{\circ}$（from MeOH ），which was identical
in all respects with an authentic specimen（see later）．
（Z）－6，7－Dimethoxy－1－（2，4，5－trimethoxybenzylidene）－1，2，3，4－ tetrahydroisoquinoline－2－carbaldehyde（26）．－A mixture of β－ （3，4－dimethoxyphenyl）ethylamine（4．0 g）and methyl 2，4，5－ trimethoxyphenylacetate（ 4.4 g ）was heated at 160° for 3 h ． Usual work－up gave N－β－［（3，4－dimethoxyphenyl）ethyl］－ 2，4，5－trimethoxyphenylacetamide（ $5.6 \mathrm{~g}, 75.7 \%$ ）as needles， m．p．118．5－119 ${ }^{\circ}$（from EtOH）（Found：C，64．8；H，7．05； $\mathrm{N}, 3.65 . \quad \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires $\mathrm{C}, 64.76 ; \mathrm{H}, 6.99$ ； $\mathrm{N}, 3.60 \%$ ）； $\nu_{\text {max．}} 1655 \mathrm{~cm}^{-1}$（NHCO）．A solution of the amide（ 4.5 g ） and $\mathrm{POCl}_{3}(21 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ was refluxed for 2.5 h ． Usual work－up afforded 3，4－dihydro－6，7－dimethoxy－1－（2，4，5－ trimethoxybenzyl）isoquinoline（25）hydrochloride（4．7 g， quantitative）as prisms，m．p．229－232（from MeOH ）．

A mixture of（25）（ 1.66 g ），fused AcONa（2．64 g），and acetic formic anhydride（ 13 ml ）was stirred at room tem－ perature for 3 h ．The mixture was poured into MeOH （20 ml ）and the whole allowed to stand at room temperature for 30 min ．Removal of the solvent under reduced pressure gave a residue which was taken up in CHCl_{3} ．Usual work－ up gave the aldehyde（26）（ $1.54 \mathrm{~g}, 99.4 \%$ ），m．p． $143-143.5^{\circ}$ （from MeOH ）；$\nu_{\text {max }} 1660 \mathrm{~cm}^{-1}(\mathrm{NCHO}) ; \delta 3.80,3.86$ ，and 3.96 （each $3 \mathrm{H}, \mathrm{s}$ ，OMe）， $3.90(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 6.51,6.60$ ， and 7.25 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.87(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArH})$ ，and 8.10 （ $1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO}$ ）．

Alternative Synthesis of（23）．－A mixture of the enamide （26）（ 150 mg ），dioxan（ 60 ml ）， $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(20 \mathrm{ml})$ ，and $47 \% \mathrm{HI}$ $(1 \mathrm{ml})$ was irradiated with a 400 W high－pressure mercury lamp（Pyrex filter）under a current of argon for 5 h to pre－ cipitate crystals，which were collected and dissolved in CHCl_{3} ．The CHCl_{3} layer was washed with brine，saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ，and further brine．Removal of the solvent gave $2,3,9,10,12$－pentamethoxyprotoberberine iodide （27）（ $125 \mathrm{mg}, 65.4 \%$ ）as plates，m．p． $230-234^{\circ}$（from $\mathrm{MeOH})$ ；$\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 4.06$ and 4.13 （each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ）， $4.22(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe})$ ，and $7.04,7.36,7.64,8.85$ ，and 9.51 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ）．
NaBH_{4} reduction of（27）（ 50 mg ）in MeOH at room tem－ perature for 2 h gave an oil，which was purified by prepara－ tive t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 26: 1 \mathrm{v} / \mathrm{v}\right.$ ）yielding（23）（ 31 mg ， 81.6% ）as prisms，m．p． $185-188^{\circ}(\mathrm{MeOH})$ ．
（土）－3－（2－Ethyl－4，5－dimethoxyphenyl）－6－hydroxy－7－methoxy－ 2－methyl－1，2，3，4－tetrahydroisoquinoline（28）．－Treatment of (\pm)－11－benzyloxytetrahydroprotoberberine（29）${ }^{16}$（4．3 g） with $\mathrm{MeI}(60 \mathrm{ml})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ at room temperature for 3 days and evaporation of the excess of MeI precipitated crystals．A mixture of the collected crystals， $\mathrm{KOH}(80 \mathrm{~g})$ ， and $\mathrm{MeOH}(600 \mathrm{ml})$ was refluxed for 4 h ．Work up as usual gave（土）－6－benzyloxy－3－（4，5－dimethoxy－2－vinyl－ phenyl）－7－methoxy－2－methyl－1，2，3，4－tetrahydroisoquinoline （ $4.3 \mathrm{~g}, 96.6 \%$ ）as prisms，m．p． $102-104^{\circ}$（n－hexane－acetone） （Found：C，75．35；H，6．85；N，3．1． $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4}$ requires C， $75.48 ; \mathrm{H}, 7.01 ; \mathrm{N}, 3.14 \%) ; \delta 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.84$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ ， $5.18(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 11 Hz$), 5.48(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 17 $\mathrm{Hz}), 6.58$ and 6.61 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ），and 6.97 （ $2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ）． Catalytic hydrogenation of the vinyl compound（ 4.0 g ）over 10% palladium－charcoal gave the tetrahydroisoquinoline （28）$(3.0 \mathrm{~g}, 93 \%)$ ，m．p．139－139．5（from benzene）．

Oxidation of（28）．－The same oxidative procedure as noted earlier［（28）（ 800 mg ）， $\mathrm{Pb}(\mathrm{OAc})_{4}(1.192 \mathrm{~g}), \mathrm{AcOH}(8$ $\mathrm{ml})]$ gave an oil（ 1.109 g ），which was purified by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 22: 1 \mathrm{v} / \mathrm{v}\right.$ ）to afford（土）－5－acetoxy－3－（2－ ethyl－4，5－dimethoxyphenyl）－8－hydroxy－6－methoxy－2－methyl－

1，2，3，4－tetrahydroisoquinoline（30）（ $794 \mathrm{mg}, 85.6 \%$ ）as prisms，m．p．167－168（from EtOH）；the diacetate had m．p． $140-141^{\circ}$（from EtOH）（Found：C，65．5；H，6．85； $\mathrm{N}, 3.0 . \quad \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{7}$ requires $\mathrm{C}, 65.62 ; \mathrm{H}, 6.83$ ； $\mathrm{N}, 3.06 \%$ ）； $\nu_{\text {max．}} 1760 \mathrm{~cm}^{-1}(\mathrm{OAc}) ; \delta 2.09,2.14$ ，and 2.26 （each $3 \mathrm{H}, \mathrm{s}$ ， $\mathrm{NMe}+2 \times \mathrm{OAc}), 4.20(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, 1 \beta-\mathrm{H})$ ，and 6.49 ， 6.53 ，and 6.87 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ）．Methylation of（30） （ 143 mg ）with $\mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{MeOH}$ gave an amorphous mass（124 $\mathrm{mg})$ ，which was purified by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ $20: 1 \mathrm{v} / \mathrm{v})$ to yield（土）－3－（2－ethyl－4，5－dimethoxyphenyl）－ 5，7，8－trimethoxy－2－methyl－1，2，3，4－tetrahydroisoquinoline（31） （ $80 \mathrm{mg}, 58 \%$ ）as prisms，m．p． $80-81^{\circ}$（from MeOH ）， identical with an authentic sample obtained in the following manner．

Alternative Synthesis of（31）．－A mixture of the methio－ dide（ 100 mg ）（m．p．260－264 ）of（23）and $\mathrm{KOH}(4 \mathrm{~g})$ in MeOH （ 13 ml ）was refluxed for 3 h ．Usual work－up gave （土）－3－（4，5－dimethoxy－2－vinylphenyl）－5，7，8－trimethoxy－2－ methyl－1，2，3，4－tetrahydroisoquinoline（ 80 mg ，quantitative） as prisms，m．p． $86-87^{\circ}$（from EtOH）［Found：M^{+}， $399.2025 . \quad \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5}$ requires $\left.M 399.2046\right] ; \delta 2.14(3 \mathrm{H}$ ， $\mathrm{s}, \mathrm{NMe}), 4.22(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, 1 \beta-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 11 Hz$), 5.42(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 17 Hz$), 3.69,3.74$ ，and 3.85 （each $3 \mathrm{H}, \mathrm{s}$ ，OMe）， 3.79 （ $6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$ ），and 6.32 ， 6.91 ，and 6.94 （each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$ ）．Catalytic hydrogenation of the vinyl compound（ 76 mg ）over 10% palladium－ charcoal gave（31）（ $72 \mathrm{mg}, 94.7 \%$ ），m．p． $80-81^{\circ}$ ．

Treatment with $\mathrm{Ac}_{2} \mathrm{O}$－Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ of the p －Quinol Acetates（5）and（6）．－Compound（5）．Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(0.8 \mathrm{ml})$ was added dropwise to a stirred，ice－cooled solution in $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{ml})$ of the acetate（5）obtained from（1）（ 400 mg ） and stirring was continued at room temperature for 1 h ． Usual work－up followed by chromatography of the product $(468 \mathrm{mg})$ on silica gel（eluant CHCl_{3} ）gave（土）－2，5 3 －di－ acetoxy－3，10，11－trimethoxytetrahydroprotoberberine（35）（330 $\mathrm{mg}, \mathbf{6 4 . 1} \%$ ）as needles，m．p． $150-151^{\circ}$（from acetone－light petroleum）．Hydrolysis of（35）（ 200 mg ）with concentrated $\mathrm{HCl}(4 \mathrm{ml})$ at room temperature for 1 h gave an oil，which was purified by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 20: 1 \mathrm{v} / \mathrm{v}\right)$ to yield（ \pm ）－2，5－dihydroxy－3，10，11－trimethoxytetrahydropro－ toberberine（ 36 ）（ $103 \mathrm{mg}, 63.6 \%$ ），m．p． $165-170^{\circ}$ ，re－ acetylation of which afforded（35）．Methylation of（36） （ 92 mg ）with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ furnished（ \pm ）－ 5β－hydroxy－2，3，10，11－ tetramethoxytetrahydroprotoberberine（ 15 ）（ $80 \mathrm{mg}, 83.3 \%$ ） as needles，m．p． $189-190^{\circ}$（from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$－acetone）（lit．，${ }^{8}$ $194-195^{\circ}$ ）；the（土）－5 β－acetate（37）had m．p． $184-186^{\circ}$ （lit．，${ }^{8} 188-189^{\circ}$ ）．

Compound（6）．Similar treatment with $\mathrm{Ac}_{2} \mathrm{O}$－concen－ trated $\mathrm{H}_{2} \mathrm{SO}_{4}$ of（6）obtained from（2）（ 400 mg ）gave an oil （ 538 mg ），which was chromatographed on silica gel（eluant $\left.\mathrm{CHCl}_{3}\right)$ to give $(\pm)-10,13 \beta$－diacetoxy－2，3，11－trimethoxytetra－ hydroprotoberberine（41）（ $183 \mathrm{mg}, 35 \%$ ）as prisms，m．p． $166-167^{\circ}$（from acetone－light petroleum），and the（土）－ $10,13 \alpha$－isomer（ 40 ）（ $61 \mathrm{mg}, 12 \%$ ）as needles，m．p． $168-169^{\circ}$ （from acetone－light petroleum），respectively．

Treatment with Aqueous $\mathrm{KOH}(5 \% w / v)-\mathrm{MeOH}$ of the (\pm)－ Diacetates（35），（41），and（40）．－Diacetate（35）．A mixture of（35）（ 200 mg ）， $5 \% \mathrm{w} / \mathrm{v}$ aqueous $\mathrm{KOH}(6 \mathrm{ml})$ ，and MeOH （ 6 ml ）was stirred at room temperature for $l \mathrm{~h}$ ．The residue obtained after removal of the solvent was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and to the whole was added $\mathrm{NH}_{4} \mathrm{Cl}$（excess）．The product was taken up in CHCl_{3} ．Usual work－up gave an oil（ 260 mg ）， which was separated by preparative t．l．c．$\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ ， $30: 1 \mathrm{v} / \mathrm{v}$ ）into（土）－2－hydroxy－3，5 $\mathbf{~}-10,11$－tetramethoxytetra－ hydroprotoberberine（38）（ $70 \mathrm{mg}, 33 \%$ ）as prisms，m．p． $179-$
181° (decomp.) (from acetone), and (土)-2-hydroxy3,5 , 10,11-tetramethoxytetrahydroprotoberberine (39) (73 mg , 34.8%) as needles, m.p. $137.5-138^{\circ}$ (from acetone-cyclohexane) [moving rate: (38) $>(39)$], respectively.

Diacetate (41). Similar treatment of (41) (250 mg) gave an oil (200 mg), which was purified by preparative t.l.c. $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, \quad 20: 1 \quad \mathrm{v} / \mathrm{v}\right)$ yielding (土)-10-hydroxy$2,3,11,13 \alpha$-tetramethoxytetrahydroprotoberberine (42) (61 mg , 29%) as needles, m.p. 146 - 148° (from acetone).

Diacetate (40). Similar treatment of (40) (84 mg) gave (42) ($20 \mathrm{mg}, 28.2 \%$), m.p. $141-143^{\circ}$, identical (n.m.r. and i.r. spectra) with the sample obtained from (41).

We are indebted to Professor M. Shamma, Pennsylvania State University, for the donation of an authentic sample of compound (19), and to Dr. Moroe, Takasago Perfumary Co., Ltd., for the supply of the starting material. Thanks are also due to Miss T. Yoshimura for technical assistance, to Sankyo Co., Ltd. for elemental analyses, and to Misses N. Sawabe and K. Ohdachi of this Faculty for n.m.r. and mass spectral measurements.
[9/753 Received, 15th May, 1979]

REFERENCES

${ }^{1}$ Part 14, O. Hoshino, H. Hara, M. Ogawa, and B. Umezawa, preceding paper.
${ }^{2}$ Preliminary reports, H. Hara, M. Hosaka, O. Hoshino, and B. Umezawa, Heterocycles, 1977, 8, 269; Tetrahedron Letters. 1978. 3809.
${ }^{3}$ (a) B. Umezawa and O. Hoshino, Heterocycles, 1975, 3. 1005; (b) O. Hoshino, M. Ohtani, and B. Umezawa, Chem. Pharm. Bull. (Tokyo), 1978, 26, 3920.
${ }^{4}$ O. Hoshino, H. Hara, M. Ogawa, and B. Umezawa, Chem. Pharm. Bull. (Tokyo), 1975, 23, 2578.
${ }^{5}$ K. Mehra, H. S. Garg, D. S. Bhakuni, and N. M. Khanna, Indian J. Chem., 1976, 14B, 844.
${ }^{6}$ T. Kametani, T. Honda, and M. Ihara, J. Chem. Soc. (C), 1971, 3318.
${ }_{7}$ T. Kametani, M. Takeshita, and S. Takano, J.C.S. Perkin I, 1972, 2834.
${ }^{8}$ D. W. Brown, S. F. Dyke, G. Hardy, and M. Sainsbury, Tetrahedron, 1971, 27, 3495.

9 T. Kametani, K. Fukumoto, H. Agui, H. Yagi, K. Kigasawa, H. Sugahara, M. Hiiragi, T. Hayasaka, and H. Ishimaru, J. Chem. Soc. (C), 1968, 112 ; T. R. Govindachari, K. Nagarajan, S. Rajeswari, H. Suguna, and B. P. Pai, Indian J. Chem., 1977, 15B, 873.
${ }^{10}$ M. Shamma and V. St. Georgiev, Tetrahedron, 1976, 32, 211.
${ }^{11}$ H. Bredereck, R. Shiber, and L. Kamphenkel, Chem. Ber., 1956, 89, 1169.
${ }_{12}$ G. R. Lenz, J. Org. Chem., 1977, 42, 1117.
${ }^{13}$ A. R. Battersby, M. Hirst, D. J. McCaldin, R. Southgate, and J. Staunton, J. Chem. Soc. (C), 1968, 2163; P. W. Jeffs and J. D. Scharver, J. Amer. Chem. Soc., 1976, 98, 4301.
${ }_{14}$ T. Ishikawa and H. Ishii, Heterocycles, 1976, 5, 275; Tetrahedron Letters, 1976, 1203.
${ }^{15}$ H. Hara, O. Hoshino, and B. Umezawa, Chem. Pharm. Bull. (Tokyo), 1976, 24, 262.
${ }^{16}$ T. Kametani, K. Nyu, S. Ikeda, T. Tominaga, and R. Iwaki, J. Pharm. Soc. Japan, 1973, 93, 1120.

[^0]: ＊The authors thank Professor M．Shamma for this terminology．

